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ABSTRACT

This paper carries out a large dimensional analysis of the
standard regularized quadratic discriminant analysis (QDA)
classifier designed on the assumption that data arise from a
Gaussian mixture model. The analysis relies on fundamen-
tal results from random matrix theory (RMT) when both the
number of features and the cardinality of the training data
within each class grow large at the same pace. Under some
mild assumptions, we show that the asymptotic classification
error converges to a deterministic quantity that depends only
on the covariances and means associated with each class as
well as the problem dimensions. Such a result permits a bet-
ter understanding of the performance of regularized QDA and
can be used to determine the optimal regularization parameter
that minimizes the misclassification error probability. Despite
being valid only for Gaussian data, our theoretical findings
are shown to yield a high accuracy in predicting the perfor-
mances achieved with real data sets drawn from popular real
data bases, thereby making an interesting connection between
theory and practice.

Index Terms— QDA, classification, machine learning, de-
terministic equivalent, random matrix theory.

1. INTRODUCTION

1.1. Overview of Discriminant Analysis for Classification

Discriminant analysis is part of a larger class of classification
methods commonly known in the machine learning commu-
nity as model-based classification methods [1–3]. These meth-
ods rely on the assumption that the input data follow a certain
distribution. A classifier is then designed so as to minimize a
certain classification metric [2]. Linear and Quadratic discrim-
inant analysis (LDA and QDA), merely relying on the assump-
tion of the data following Gaussian distribution, are among the
most popular representatives [4]. Both methods are designed
to assign for a given input data the class that presents the high-
est posterior probability. Their major unique difference is that
LDA presumes equal covariance matrices for both classes but
different means whereas QDA assumes different covariances

and means across classes. By construction, they both require
the knowledge of the Gaussian parameters for each class. This
can be performed by estimating these parameters from the
available training points using maximum likelihood estima-
tion, a way that should be effective if the number of training
samples is sufficiently high. However, when the number of
training samples is small compared to their dimensions, max-
imum likelihood covariance matrix estimates can be poorly
conditioned, leading to high misclassification error rates. One
popular approach to solve the ill-posed estimation consists in
regularizing the covariance estimation [5]. It has led to the
emergence of regularized versions of discriminant analysis,
termed as regularized LDA (R-LDA) and regularized QDA
(R-QDA). In this paper, the focus is on regularized QDA.

1.2. Previous works

A large body of research has been conducted to analyze the per-
formance of discriminant analysis classifiers. One approach,
carried out under the assumption of exact dimensions and hing-
ing on properties of the Wishart distribution, has been pursued
in [6] to derive the exact misclassification error rate of the
QDA. Such an analysis was limited to the case in which the
training sample size for each class is greater than the number
of features. Moreover, it cannot be easily generalized to han-
dle regularized discriminant analysis. A second asymptotic
approach has arisen in several recent works, leading to concur-
rent results about the misclassification error rates associated
with discriminant analysis classifiers. Particularly, based on
sparsity assumptions on the mean and covariance matrices,
sparse variants of LDA and QDA has been proposed in [7]
and [8] and analyzed under the asymptotic regime in which
the number of features p is much larger than the number of
the training samples n. A different possible regime is the one
in which n and p grow large with the same pace, often termed
as the double asymptotic regime. The major advantage of this
regime is that it lends itself to the use of results from random
matrix theory. Most importantly, the work of Raudys in [9]
which permits to derive the asymptotic misclassification error
in the double asymptotic regime under the assumption of equal
covariance matrices. It has also recently been considered in
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the analaysis of the regularized LDA [10], but to the best of the
authors’ knowledge has not been considered for the most gen-
eral case in which the covariances across classes are different,
henceforth, calling for the use of QDA based classifiers.

1.3. Contributions

The present work aims to provide a comprehensive under-
standing of the performance of regularized QDA under the
asymptotic regime in which the number of training samples
with each class grow large with the number of features. Under
some mild assumptions controlling the distance between class
covariances and means, we show that the classification error
converges to a non-trivial deterministic quantity that only de-
pends on the Gaussian distribution parameters of each class
and the problem dimensions. Although real data are far from
being Gaussian, our asymptotic approach has been shown to
yield good accuracy when applied to real data.

• Under some mild assumptions, building on fundamental
results from random matrix theory [11] we establish the
convergence of the classification error to a deterministic
error that reveals the mathematical connection between
the classification error and the statistical parameters as-
sociated with each class.

• We leverage this result to propose a more efficient de-
sign of the regularized QDA classifier by selecting the
regularization parameter that minimizes the asymptotic
classification error.

• We validate our theoretical findings using both synthetic
data and real data drawn from available data bases. We
particularly illustrate the good accuracy of our results
for both settings.

In the remainder of this paper, we give an overview of regu-
larized QDA for binary classification in Section 2. The main
results are presented in Section 3 while all proofs are available
in an extended version of this paper. We validate our analysis
in Section 4 and conclude the paper in Section 5.

Notations:
Scalars, vectors and matrices are respectively denoted by non-
boldface, boldface lowercase and boldface uppercase charac-
ters. 0p×n and 1p×n are respectively the matrix of zeros and
ones of size p× n, Ip denotes the p× p identity matrix. The
notation ‖.‖ means the Euclidean norm for vectors and the
spectral norm for matrices. (.)

T , tr (.) and |.| stands for the
transpose, the trace and the determinant of a matrix respec-
tively. For two functionals f and g, we say that f = O (g),
if ∃ 0 < M < ∞ such that |f | ≤ Mg. P (.), d−→,

p−→ and
a.s.−−→ respectively denote the probability measure, the conver-
gence in distribution, the convergence in probability and the

almost sure convergence of random variables. Φ (.) denotes
the cumulative density function (CDF) of the standard normal
distribution.

2. QDA CLASSIFIER FOR BINARY
CLASSIFICATION

We consider the problem of classifying a multivariate obser-
vation x ∈ Rp×1 to one of two classes under the assumption
that x belongs to class Ci, i = 0, 1, if and only if

x = µi + Σ
1
2
i ω,

withω ∼ N (0p×1, Ip), Σi ∈ Rp×p and µi are the covariance
and the mean vector associated with class i. Let πi, i = 0, 1
denote the prior probabability that x belongs to class Ci. Based
on these assumptions, the Bayes rule classifier is the one that
assigns x to the class that presents the highest posterior proba-
bility, P(x ∈ Ci|x). This amounts to selecting the class which
achieves the highest value of the following classification score

WQDA
i (x) = −1

2
log |Σi| −

1

2
(x− µi)T Σ−1i (x− µi)

+ log πi.

(1)

In particular, the classification rule is given by{
x ∈ C0 ifWQDA

0 (x) > WQDA
1 (x)

x ∈ C1 otherwise.
(2)

The resulting classification approach produces quadratic
class boundaries, giving the name quadratic discriminant anal-
ysis (QDA) to the corresponding classifier. As a Bayes classi-
fier, it is associated with the lowest possible expected misclas-
sification error rate if the data follow the assumed Gaussian
mixture model. However, in practice the class parameters µi
and Σi are not known. To solve this issue, a set of indepen-
dent training data with known class labels is used to estimate
the covariance matrix Σi and the mean vector µi associated
with each class. Such estimates are used as a plug-in estima-
tors in the discriminant analysis cost (1). In particular, let ni
be the number of available samples in class Ci and denote
by T0 = {xl ∈ C0}n0

l=1 and T1 = {xl ∈ C1}n0+n1

l=n0+1 the cor-
responding samples. Denote by xi and Σ̂i the empirical es-
timates of the mean vector and covariance matrix associated
with class Ci

xi =
1

ni

∑
l∈Ti

xl,

Σ̂i =
1

ni − 1

∑
l∈Ti

(xl − xi) (xl − xi)
T
.



Then, the empirical discriminant analysis score becomes

ŴQDA
i (x) = −1

2
log |Σ̂i| −

1

2
(x− xi)

T
Σ̂−1i (x− xi)

+ log πi,

(3)

The empirical QDA formulated in (3) requires all covariance
estimates Σ̂i to be non-singular. However, in some practical
scenarios, Σ̂i might be ill-conditioned if not singular, a situ-
ation arising in particular when the number of samples ni is
lower than the number of features. To get around this issue,
regularized estimators shrinking the sample covariance esti-
mate to identity have often been proposed [5]. In this paper,
we consider the following regularized estimate of the inverse
covariance matrix

Hi =
(
Ip + γΣ̂i

)−1
, (4)

where γ > 0 is a regularizer. The regularized discriminant
analysis is thus obtained by replacing Σ−1i by Hi, thus yield-
ing

ŴRQDA
i =

1

2
log |Hi| −

1

2
(x− xi)

T
Hi (x− xi) + log πi.

Conditioned on the training samples Ti, i ∈ {0, 1}, the classi-
fication error contributed by class Ci is given by

εi = P
[
(−1)

i
ŴRQDA

0 (x) < (−1)
i
ŴRQDA

1 (x) |x ∈ Ci
]
,

(5)

which yields the following total mis-classification error proba-
bility

ε = π0ε0 + π1ε1. (6)

On the other hand, the conditional classification error in (5)
can easily be shown to write as

εi = P
[
ωTBiω + 2ωTyi < ξi

]
, (7)

where ω ∼ N (0p, Ip),

Bi = Σ
1/2
i (H1 −H0) Σ

1/2
i ,

yi = Σ
1/2
i [H1 (µi − x̄1)−H0 (µi − x̄0)] ,

ξi = − log

(
|H0|
|H1|

)
+ (µi − x̄0)

T
H0 (µi − x̄0)

− (µi − x̄1)
T

H1 (µi − x̄1) + 2 log
π1
π0
.

It thus amounts to computing the cumulative distribution func-
tion (CDF) of quadratic forms of Gaussian random vectors,
and hence cannot be derived in closed form in general. How-
ever, it can be still approximated by considering asymptotic
regimes that allow to exploit results about central limit theo-
rem involving quadratic forms, as will be shown in the next
section. This is in striking difference with LDA classifiers,
for which the conditional probability coincides with that of a
Gaussian random variable (since Bi = 0).

3. STATEMENT OF THE MAIN RESULTS

In this section, we state the main results regarding the deriva-
tion of deterministic approximations of the QDA classification
errors. Such results have been obtained by considering some
specific assumptions, carefully chosen such that an asymptot-
ically non-trivial classification error (i.e. neither 0 nor 1) is
achieved. We particularly highlight how the provided asymp-
totic approximations depend on such statistical parameters as
the means and covariances within classes. Ultimately, these
results can be exploited in order to improve the performances
by allowing optimal setting of the regularization parameter.

3.1. Technical Assumptions

We consider the following double asymptotic regime in which
ni, p grow to∞ for i ∈ {0, 1} and the following assumptions
are met

Assumption 1 (Data scaling). ni

p → c ∈ (0,∞), with |n0 −
n1| = o (p).

Assumption 2 (Mean scaling). ‖µ0 − µ1‖2 = O
(√
p
)
.

Assumption 3 (Covariance scaling). ‖Σi‖ = O (1).

Assumption 4. lim sup 1√
p tr A (Σ0 −Σ1) = O (1), for all

A ∈ Rp×p satisfying ‖A‖ = O (1).

The first assumption states that the number of features
and that of training samples are commensurable. This is of
standard use within the framework of random matrix theory
and allows to obtain closed-form approximations of the mis-
classification error probabilities. Assumption 1 implies also
that πi → 1

2 for i ∈ {0, 1}. The second assumption governs
the distance between the two classes in terms of the Euclidean
distance of the difference between the means. This is manda-
tory in order to avoid asymptotic perfect classification. A sim-
ilar assumption is required to control the distance between
the covariance matrices. Particularly, the spectral norm of the
covariance matrices are required to be bounded while their
difference should satisfy 1√

p tr A (Σ0 −Σ1) = O (1). This
latter condition is met for instance when at most d√pe eigen-
values of Σ0−Σ1 areO (1) while the remaining areO (p−α),
for α ≥ 1

2 . It allows, together with the fact that πi → 1
2 for

i {0, 1}, terms involving the difference H1 −H0 to decrease
at a rate of O

(
p−

1
2

)
.

3.2. Central Limit Theorem (CLT)

Under Assumptions 1-4, a central limit theorem (CLT) on the
random variableωTBiω+2ωTyi whenω ∼ N (0p×1, Ip) is
established. This result is essential to evaluate the asymptotic
approximation of the mis-classification rate and is stated as
follows



Proposition 1 (CLT). Under assumptions 1-4, the following
convergence holds

ωTBiω + 2ωTyi − tr Bi√
2 tr B2

i + 4yTi yi

d−→ N (0, 1) . (8)

Proof. The proof is mainly based on the application of the
Lyapunov’s CLT for the sum of independent but non identi-
cally distributed random variables [12].

As a by-product of the above Proposition, we obtain the
following expression for the conditional classification error εi

Corollary 1. Under the setting of Proposition 1 , the condi-
tional classification error in (5) satisfies

εi − Φ

(
(−1)

i ξi − tr Bi√
2 tr B2

i + 4yTi yi

)
→ 0. (9)

3.3. Deterministic Equivalent

With the term above at hand, we are now in position to derive
the deterministic equivalent for the conditional classification
error. First, we shall introduce the following notations, which
stems from standard results from random matrix theory. We
define for i ∈ {0, 1}, δi as the solution of the following fixed
point equation 1

δi =
1

ni
tr Σi

(
Ip +

γ

1 + γδi
Σi

)−1
.

Define Ti as

Ti =

(
Ip +

γ

1 + γδi
Σi

)−1
.

and the scalar φi and φ̃i as

φi =
1

ni
tr Σ2

iT
2
i , φ̃i =

1

(1 + γδi)2
.

Let µ = µ0 − µ1, and set ξi, bi and Bi to

ξi ,
1
√
p

[
− log

|T0|
|T1|

+ log
(1 + γδ0)

n0

(1 + γδ1)
n1

+γ

(
n1δ1

1 + γδ1
− n0δ0

1 + γδ0

)
+ (−1)

i+1
µTT1−iµ

]
.

bi =
1
√
p

tr Σi (T1 −T0) .

Bi , c

[
φ0

1− γ2φ0φ̃0
+

φ1

1− γ2φ1φ̃1

]
− 2

p
tr ΣiT1ΣiT0.

1Mathematical details treating the existence and uniqueness of δi can be
found in [11].

Theorem 1. Under assumptions 1-4, the following conver-
gence holds for i ∈ {0, 1}

εi − Φ

(
(−1)

i ξi − bi√
2Bi

)
p−→ 0.

Proof. The proof relies on showing that Bi, bi ξi are respec-
tively the limits in probability of 1

p tr B2
i , 1√

p tr Bi and 1√
pξi.

Further details can be found in Appendix A of the extended
version.

Theorem 1 shows that the mis-classification error con-
verges to a non-trivial deterministic quantity that depends only
on the statistical means and covariances within each class. The
major importance of this result is that it can be used to deter-
mine the regularization γ that minimizes the asymptotic clas-
sification error. While it seems to be elusive for such value
to possess a closed-form expression, it can be numerically
obtained by using a simple one-dimensional line search algo-
rithm.

Special cases

1) It is important to note that we could have considered
‖µ0 − µ1‖ = O(1). In this case, the classification error rate
would still converge to a non trivial limit but would not asymp-
totically depend on the difference ‖µ0 − µ1‖. This is because
in this case, the difference in covariance matrices dominate
that of the means and as such represent the discriminant metric
that asymptotically matters.
2) Another interesting case to highlight is the one in which
‖Σ0 −Σ1‖ = O(p−

1
2−α), α > 0. From Theorem 1 and

using some basic manipulations, it is easy to show that the
total classification error converges to

ε− Φ

−µTTµ

2
√
p

√
1− γ2φφ̃
cγ2φ2φ̃

 p−→ 0, (10)

where φ, φ̃ and T have respectively the same definitions as φi,
φ̃i and Ti upon dropping the class index i, since quantities
associated with class 0 or class 1 can be used interchangably
in the asymptotic regime. It is easy to see that in this case
if ‖µ0 − µ1‖2 scales slower than O

(√
p
)
, classification is

asymptotically impossible. This must be contrasted with the
results of LDA [10], which provides non-vanishing misclassi-
fication rates for ‖µ0 − µ1‖ = O(1).
3) When ‖Σ0 −Σ1‖F = O(1) occurring for instance when
‖Σ0 −Σ1‖2 = O(p−

1
2 ) or Σ0 − Σ1 is of finite rank, and

‖µ0 − µ1‖2 = O(1), we can prove that the misclassification
error probability associated with each class converges respec-
tively to 1 − η and η where η is some probability depending
solely on the statistics. Hence, the total mis-classification error
probability associated with regularized QDA converges to

ε→ 0.5.



The above remarks should help to draw some hints on when
regularized LDA or regularized QDA should be used. Partic-
ularly, if the Frobenius norm of Σ0 −Σ1 is O(1), using the
information on the difference between the class covariance
matrices is not recommended. We should rather rely on using
the information on the difference between the classes’ means,
or in other words favoring the use of regularized LDA against
regularized QDA.

4. EXPERIMENTS

In this section, we carry out simulations to validate our results
for synthetic and real data.

4.1. Synthetic Data

For synthetic data, we choose the following models for µi and
Σi: {Σ0}i,j = 0.6|i−j|,

Σ1 = Σ0 + 2

[
Ik 0k×(p−k)

0(p−k)×k 0(p−k)×(p−k)

]
, k =

⌊√
p
⌋
, µ0 =[

1,0(p−1)×1
]
, µ1 = µ0 + p−

1
4 1p×1. We validate the theoret-

ical results of the previous section by evaluating the empirical
misclassification rate of the regularized QDA classifier over
a testing set of ntest = 1000 samples from C0 and C1. The
statistics x̄i and Σ̂i are estimated using training sets Ti inde-
pendent of the testing set, with cardinalities ni respectively
for i ∈ {0, 1}. This process is averaged over 50 Monte Carlo
realizations. In a first experiment, we fix γ = 1 and quantify
the classification error as a function of the number of features
p ranging from 100 to 500. The results of this experiment
are shown in the first row of Figure 1 for different values of
c ∈ { 12 , 1,

3
2}. For all values of c, it is clear that the asymptotic

error presents a good match with the real error computed over
the given testing set.

In a second experiment, we fix p = 300 features and ex-
amine the behavior of the classification error with respect to
the regularization parameter γ. As seen, there exists an opti-
mal γ denoted by γ∗ that gives the lowest classification error
for R-QDA. The theoretical asymptotic error can be then used
to determine the optimal regularization parameter. It is worth
mentioning that as the ratio p

ni
increases, the optimal value of

the regularization parameter γ becomes closer to zero. This
can be explained by the fact that in this case, the empirical
covariance matrix becomes ill-conditioned, and hence, putting
more weight on the bias (identity matrix in this case) should
yield better performance.

4.2. Real Data

The Gaussianity assumption of the training set and testing set
has been extensively used in our derivation. However, in prac-
tice, real data are not Gaussian. In this section, we assess how
accurate are our results when applied on real data. Surpris-
ingly, when applied to the real data sets namely the MNIST
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Fig. 1: Performance in terms of the testing classification error
of the regularized QDA classifier with equal training, n0 = n1.
The x-axis in the first row is the number of features p for γ = 1
while in the second row is the regularization parameter γ for
p = 300 features.
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Fig. 2: Performance of the R-QDA classifier applied to both
data sets given by Table 1 in terms of the average classification
error for different values of the ratio c. The first row gives the
performance of the R-QDA classifier when applied to MNIST
data set with digits 8 and 9 whereas the second row gives its
performance when applied to digits 4 and 9. The x-axis is
the regularization parameter γ. In both data sets, we consider
equal training, i.e. n0 = n1.



Table 1: Data sets Description where both statistics µi and
Σi, i ∈ {0, 1} are estimated using the total samples available
in the data sets.

MNIST (8,9) MNIST (4,9)
p 784 784
N0 5851 5842
N1 5949 5949
1√
p ‖µ0 − µ1‖2 4.6707 1.9687
1√
p tr (Σ0 −Σ1) 2.2406 0.7345

data set [13] (class 0 is given by instances of the digit 8 or 4
and class 1 is given by instances of the digit 9). Our deriva-
tions are found to mimic the real behavior of the classification
error with a reasonable discrepancy. In Table 1, we summarize
both data sets parameters in terms of the number of features p,
the total number of samplesN0 of class 0 and the total number
of samples of class 1 N1 along with their associated distances
in means and covariance matrices. The training for each class
i is performed using ni samples randomly selected from the
available Ni samples. The testing is then performed by ran-
domly selecting ntest samples from the remaining Ni − ni
samples. This process is repeated for 100 times, over which
the mis-classification error is averaged. Surprisingly as shown
in Figure 2, the deterministic equivalent of the classification
error computed based on the empirical means and the covari-
ance matrices provides a good way to approximate the real
mis-classification error for both data sets. More importantly,
the deterministic equivalent is able to track the regularization
parameter γ that would minimize the average classification
error as shown in Figure 2.

5. CONCLUSION

This paper studies the asymptotic mis-classification error rate
of the regularized QDA classifier. It is shown that under the
regime in which the dimension of the training feature vectors
and their numbers in each class grow large at the same pace,
the mis-classification error converges to a deterministic quan-
tity that depends solely on the problem dimensions and the
statistical parameters in each class. By setting the regulariza-
tion parameter to the value that minimizes the asymptotic mis-
classification rate, such a result should set the stage for a better
design of the regularized QDA. This becomes all the more of
a major practical importance, given that a good accuracy of
our derivations is shown for synthetic and real data.
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